
Project Proposal: Playing Connect-4 with Parallelism
Howard Chen, Elizabeth Ji

hhchen@andrew.cmu.edu, emji@andrew.cmu.edu
April 26, 2017

1 Progress

In our original schedule, we detailed the following implementations for our state-searcher:

• Sequential (baseline)

• OpenMP

• Pthread

• CUDA

At this point, we have completed the sequential and OpenMP implementations, as well as a bench-
marking harness for measuring performance. Our testing harness currently tests on empty initial
boards and allows different runs of multiple depths to compare results. In the process of optimizing
our OpenMP implementation, we also implemented a lock-free hashmap. For testing purposes, we
have also implemented a simple text-based interface for playing against the AI.

2 Projected Deliverables

We still believe it is feasible to achieve all of the deliverables detailed in our proposal. We will
also extend our testing harness to allow inputs of different starting boards to examine if the affects
performance. Additionally, we will very likely have time to implement a program that allows
different AI’s to play against each other. We will also create a set of graphs to illustrate the
relative performances of different implementations on different inputs, varying on the initial board
as well as the search depth.

Due to the relative simplicity of Connect4 boards, we have decided to not pursue the direction of
finding/parallelizing more complex board-scoring heuristics. The remaining goals we wish to hit
are as follows:

• Pthread and CUDA implementations

• Performance Graphs

• AI vs AI program

At the parallelism competition, we will likely be presenting the performance graphs.

1



Project Checkpoint
Howard Chen, Elizabeth Ji

hhchen@andrew.cmu.edu, emji@andrew.cmu.edu

3 Preliminary results

The table below summarizes the relative performance of the OpenMP implementation versus the
baseline. These results were obtained by starting the search on the empty board.

Search depth States Sequential time (ms) OpenMP time (ms)

3 294 6.7 22.7
5 6577 101.8 64.2
7 76965 875.1 474.2
9 825432 8252.0 4642.3

4 Concerns

The primary difficulty with implementing an OpenMP-based solutioon was coordination between
threads. In particular, there are many different sequences of moves that result in the same boards,
and we do not need to score a board more than once. However, de-duplication of boards in a parallel
setting can be fairly difficult to do in a performant manner. For this reason, we implemented a
lock-free hash table that can be used for CPU-based implementations. However, we don’t currently
have a good way of working around this problem for our CUDA-based solution. In the worst case,
any CUDA implementation may simply be slower than the baseline.

2


